14 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-20, NO. 1, JANUARY 1972

versus channels and time information, followed by a
relatively short profile containing the occupancy in-
formation on the given frequency block during the five-
minute monitoring period.

Another mode of operation is a monitor mode. 1t
would provide for monitoring of a single channel at a
high-sample rate. This optional mode of operation can
be implemented relatively easily with minor program-
ming. This mode is very useful in determining precisely
what percentage of time a channel is occupied. This in-
formation can be of special significance for specific
channels, such as emergency channels and/or other
channels which show unusual occupancy conditions.

A more sophisticated application of the computer-
controlled spectrum surveillance system is that .of
locating transmitters being used for bugging and eaves-
dropping. The frequency range and the mobility of the
system allow it to be moved easily into buildings where
suspected transmitters may be located. Cable coupling
devices can be used to check power and telephone lines for
transmission of information to some remote transmitter.

Only a few of the more apparent applications of the
system have been discussed. As hardware is being de-
ployed in the field, more and more applications are being
generated, utilizing the mini-computer concept and data
output compatible with batch processing computers.
Changing from one application to another only requires
additional software, thus minimizing the obsolescence
of the system and maximizing the user’s capital invest-
ment dollars.
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A Discrete Point Approach to the Measurement of
Radiated Power of Planar Apertures

Abstract—It is shown that for a high-gain circular aperture with
linearly polarized and rotationally symmetric excitation the total real
radiated power can be expressed as a weighted sum of radiation in-
tensities in IV direction, where NV is equal to the first integer greater
than 2.14D,. D, is the diameter of the aperture in wavelengths. In an
N-point measurement scheme the N directions and the weights in~
volved in the weighted sum of radiation intensities are completely
independent of the parameters of the radiation system and can be
obtained from the well-known and tabulated properties of the
Legendre polynomials. The criterion that N be equal to the first
integer greater than 2.14D, is independent of any specific distribu-
tion in the aperture so long as it is of the type parabolic-on-a-
pedestal. Such aperture distributions satisfy most needs and cover
typical behavior of actual dish antennas. Even though the result of
the threoretical formulation is that the above mentioned criterion for
N holds good only for high directivity apertures, computational re-
sults show that for D) as small as 5 the error involved when IV
satisfies this criterion is less than 0.02 percent, and for D, equal to
7 the error reduces to 0.005 percent. This not only indicates that the
criterion that IV be equal to the first integer greater than 2.14D,
holds good even for small values of D,, but it also shows the rapid
decrease of error with increase in D).

A knowledge of the total radiated power is required for the de-
termination of gain and radiation efficiency of an aperture. The
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discrete point approach to the measurement of total radiated power
eliminates the need for using the conventional method of graphical
integration of radiation patterns for the determination of the total
radiated power. The method of graphical integration has been known
to give erroneous results for high-gain apertures. Measurement of
radiation intensities in the fine sidelobe structure is another source
of error in the conventional method. In the discrete point approach
the directions in which the radiation intensity need be measured tend
to cluster around the normal to the aperture. This means fewer
measurements in the fine sidelobe structure.

I. INTRODUCTION

HE TOTAL POWER radiated by an aperture is
Tthe integral of radiation intensity over all direc-

tions. In this paper we have shown that for circu-
lar apertures with rotationally symmetric excitation this
integral for the total real radiated power can be given a
discrete-point representation. We further show that this
discrete-point representation can be of any order, but
when the number of points is equal to or greater than
][2.14D>\“ for a high-gain aperture, (Dy>>1) the error
involved in such a representation is completely and
entirely negligible. D, is the diameter of the aperture in
wavelengths and ||2.14D,|| denotes the first integer
greater than the number 2.14D,. Computational results
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show that even when D, is not very large the criterion
that N be equal to ||2.14D,]| holds good remarkably
well. For example, for Dy as small as 5 the error involved,
when N is given by this criterion, is less than 0.02 per-
cent. When D, is increased to 7 the error involved with
N determined by the same criterion reduces to less than
0.005. percent. This also shows the rapid decrease of
error as D, increases.

A consequence of this discrete-point representation is
that for high-gain apertures the total real radiated power
can be considered to be a weighted sum of radiation in-
tensities in |[2.14Dy|| directions. This leads to the dis-
crete-point approach to the measurement of total power
radiated by an aperture. The directions in which the
radiation intensity need be measured and the weights
involved in the weighted sum of radiation intensities
depend only upon the number of points in the measure-
ment scheme, and are otherwise independent of the
parameters of the radiation system. These directions
and weights are completely determined by the proper-
ties of Legendre polynomials that are well known and
extensively tabulated in the literature.

The criterion that for an N-point measurement scheme
to be valid N must be equal to ||2.14D,|| holds good re-
gardless of any specific distribution in the aperture so
long as it is of the type (1—p?)"-on-a-pedestal. These
aperture distributions, also called parabolic-on-a-pedes-
tal, satisfy most needs and cover typical behavior of
actual dish antennas [1]. Whether the above stated rule
would be true for Taylor circular apertures [2] also is
still an open question. The mathematical expression of
the pattern space factor of the Taylor-circular-aperture

“distribution appears to be too complicated for the type
of analysis presented here. However, this does not re-
duce the range of applicability of our results as the Tay-
lor distributions in large circular apertures are not read-
ily realizable [1].

The theory that we have developed here holds good
when the aperture fields are linearly polarized. This
assumption is not overly restrictive, because for a wide
class of practical aperture antennas the aperture fields
can be considered to be almost completely linearly
polarized, the energy in the cross-polarization compo-
nent being almost completely negligible [3]. Our as-
sumption of rotational symmetry of the aperture dis-
tributions is also not overly restrictive. The most
common high-directivity apertures are of circular type,
such as parabolic dishes. These apertures usually have
rotationally symmetric aperture distributions. Although
simple feeds like dipoles, slots, and horns have unequal
E- and H-plane patterns, in practice considerable effort
is expended to equalize the feed patterns in two planes
[1].

The discrete-point approach to the measurement of
total radiated power is shown to have advantages over
the conventional methods. One conventional method
consists of the experimental measurement of the radia-
tion intensities in all directions and the graphical inte-
gration of the resulting power pattern [4]. The integra-
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tion of power patterns is known to give results with error
for high-gain apertures. The discrete-point approach
eliminates this error entirely since there is no graphical
integration involved. Measurement of radiation intensi-
ties in the fine sidelobe structure is another source of
error in the conventional methods. In the discrete-point
approach the directions in which the radiation intensity
need be measured tend to cluster around the normal to
the aperture. This means fewer measurements in the
fine sidelobe structure.

II. A DisCrRETE-POINT REPRESENTATION
FOR THE RADIATED POwWER

For a planar aperture consisting of holes in a conduct-
ing screen in the ¥z plane the electromagnetic fields in
the region x>0, the region into which the aperture
radiates, can be expressed as a sum of an infinity of
plane waves. By using the plane-wave spectrum repre-
sentation the following expression for the total radiated
power can be derived for an aperture the aperture elec-
tric field of which is polarized along the y axis. (By aper-
ture electric field we mean the tangential component of
electric field in the aperture [5]-[8]).

S ] |
2("’,U«O (ky +Icz )<lc0

(k* — &) | Pyl ko) |*
(ko — By? = k)12

dky dk. (1)

where F,(k,, k.) represents complex amplitude of the y
component of the electric field in the continuous angular
spectrum of plane waves, and can be obtained from the
aperture electric field by the following relationship [5]-

[8]
(;JLMM@

cexp [j(kyy + k2)]ldy dz (2)

where E,(0, y, 2) is the ¥ component of the electric field
in the aperture and .S denotes the aperture surface. In
(1) and (2) %k, and &, are y and 2 components, respec-
tively, of the free-space propagation vector of mag-
nitude ko=w(uoe)2 w is the angular frequency, po the
permeability, and ¢, the dielectric constant of free space.

In a spherical coordinate system, the polar axis of
which coincides with the normal to the aperture, the
expression (1) for the total radiated power can be shown
to transform into

(27r)2k0 f fzft(l — {2 sin? ¢)
\/(1

2wpg
where £ =sin 6. Note that the polar angle § is measured
from the normal to the aperture. ¢ is the azimuthal
angle, and is measured in the plane of the aperture from
the z axis. In this spherical coordinate system the fol-
lowing relationship can also be derived

Fy(ky, k) =

| F,(t, ¢) |2do di (3)



76 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, JANUARY 1972

j2whky cos 8 .
T exp (—jkoR)FL(0, 6)  (4)

Ey(Ry 8, ¢) =
where R is the distance from the origin. This relation-
ship, which holds only in the far-field region, can be
derived by applying the method of stationary phase to
the plane-wave spectrum representation of E,(x, v, 2)
[9].

For circular apertures with rotationally symmetric
excitation F,, given by (2), reduces to the zeroth order
Hankel transform of the ¥ component of electric field in
the aperture and is independent of the azimuthel angle
¢. Therefore, expression (3) for total radiated power

reduces to
1 1 .
Pr = fo —\T——; h(t) dt (5)
where
_ 2m)3ke® (1 — 2/2)t \
]l(t) = Seormn \/(1 T t) l F:t/(t)l . (6)

For all aperture distributions that we shall be concerned
with, | F,,(t)| %, and therefore %(¢), possess derivatives
of all orders on the interval (0, 1). This implies that if we
give a discrete N-point representation to the integral
in (5) by the theorem presented in Appendix I, then it is
possible to calculate the error involved in such a repre-
sentation for any value of N, since for every N the func-
tion i(t) possesses the (2N)th derivative in the interval
(0, 1). Therefore, by the theorem in Appendix I, we can
write (5) as

24N+1

[@em)!]?
AN + 1 [(aN)1]?
where 0 <9< 1. The second term on the right-hand side
in (7) denotes the error involved in the discrete-point

representation and will be called the error term. £, and
oy, are given by

RN ) (T)

N
P.o= D aph(l) +
k=1

h=1— %y (8)
O = 201k.2N (9)

k.2 Is the kth positive zero of the Legendre polynomial
of degree 2N, the zeros being counted from the one
which is closest to 4-1. a;,2x is the weight corresponding
to £;,2x in the Gauss—Legendre quadrature rule of order
2N. Both £,2x and the corresponding o sy have been
tabulated by Stroud and Secrest [10] for values of (2IV)
up to 516. It should be noted that all £, lie between 0
and 1.

It was indicated in the Introduction that we are con-
cerned here with high-directivity circular apertures with
aperture excitation of the type parabolic-on-a-pedestal.
Let Dy denote the diameter of such an aperture in wave-
lengths. In the next section an upper bound for the error
term in (7) is derived and it is shown that for such aper-
tures if D\>>1, and if N> 2.14D, then the error term in
(7) becomes entirely negligible and can be taken to be

zero for all purposes. And, in fact, V need only be equal
to ||2.14D)||, where [12.14Dy]| denotes the first integer
greater than the number 2.14D,. Computational results
presented in Section 1V show that even when D, is as
small as 7 the error term, when N=H2.14D>\H, is of the
order of 1073P, which is indeed negligible for all engi-
neering purposes. The error term is also shown to de-
crease very rapidly as Dy increases. It should be noted
that the criterion that N =||2.14D,| is independent of
the aperture distribution solong as it is of the type para-
bolic-on-a-pedestal. Therefore, we can write

”2 . 14D)\”

P,. = Z (547 h(tk)

k=0

(10)

where we have retained the equality sign to emphasize
that the error involved is an entirely negligible fraction
of P, for high-gain apertures.

Substituting (4) in (6), and substituting the resulting
equation in (10), we get, after making use of the fact
that t=sin 0,

RZ

N
P, =2r Z Br [:'_"' I Ey(R7 070) |2:l (11)
=0 272,
where
N =||2.14D)|
(2 —sin® @) sin 6
B = craw v/ (1 4 sin 6,) cos? 6, (12)
6, = sin™! (#) = sin™! (1 — £%,3) 13)

Zy = \/(Mo/éo)-

As has been mentioned before §;,0x and oy have been
tabulated by Stroud and Secrest [10] for each value of
2N up to 512. By using (12) and (13) it is indeed a simple
matter to convert these tables into 8y, 8 tables for each
value of N up to 256.

In (11) R2/2Z,- |Ey(R, Ok)| % represents the radiation
intensity as determined from y-directed component of
electric field alone in the direction 8, in the far-field re-
gion. The angle 0, is measured from the normal to the
aperture, and the azimuthal angle does not matter be-
cause of rotational symmetry.

Equation (11) represents the total radiated power as a
sum of radiation intensities, as determined from only
one component of the electric field, in |l2.14D>\” direc-
tions. That only one component of electric field is in-
volved in the discrete sum is not at all surprising. That
is because it is quite possible to express the conven-
tional integral for the total radiated power in terms of
only the y component of electric field in the far-field
region [11].

ITI. ErRrOR ESTIMATE FOR THE DISCRETE-
PoIiNT REPRESENTATION

In this section our aim is to justify (10). In other
words, we have to show that the error term in (7) is in-
deed a vanishingly negligible fraction of total radiated
power when N = 1[2.14D>‘l].
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Let the error term in (7) be denoted by Ey(P,), then

[2nv)1]?
4N + 1 [(an)!]?

where 0 <5< 1. This means that there exists a point in
the interval (0, 1) at which the (2N)th derivative of
h(¢) yields through (14) the required error. Now suppose
we are able to find a quantity M,y that is an upper
bound on the magnitude of the (2N)th derivative of
h(t) on the interval (0, 1), then

24N+1

Ex(Pr) = RN () (14)

| RN () | < Moy (13)

and we can write for the upper bound on the ]EN(PT)]
2v L [(2N) 1]

| Ex(P) | < [ Moy. (16)

4N + 1 [(4N)!]

In the subsequent analysis we will determine the quan-
tity M,y and, thence, the upper bound on the error
| Ex(P0)]. ‘

As was mentioned in the Introduction, our concern
here is with the aperture excitation of the type parabolic-
on-a-pedestal. Expressed mathematically for a circular
aperture of radius L, the aperture electric field can be

written as
E, 0, y, 2) p< L

o> L (17)

= E,ofb + [1 = (o/1)*]"},
=0,
where b controls the height of the pedestal and # is any

integer greater than zero. In the above equation p is
given by

p =V + 2. (18)
The y component of the pattern-space factor of such an

aperture distribution is obtained by substituting (17)
in (2). We get

1 Ani1(kolt
Fy(0) = Bnl? il °—)] (19)

s

[bAl(koLt) +

n
where
nlJ . (x)
An(x) = (20)
(x/2)"
J.(x) being the nth-order Bessel function.
Substituting (19) in (6), we can write for A(f)
M) — I:EyoL2_|21rko3 (1 — 12/2)¢
2 Jowe vA+0)
An+1(koU)]2
- | bA:(RoLt — ], (21
[sasthozy + =222 |
The t-dependent term outside the square brackets, i.e.,
(1 — 2/2)
V4SS )]

is a relatively smooth (nonoscillatory) function in the
interval (0, 1). A plot of this function would show that
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its value increases without changing sign from zero at
the origin to 0.35 to t=1, attaining a maximum of 0.40
at approximately ¢t =0.8. (Apparently the singularity of
this function, which occurs at ¢= —1, is too far away
from the interval (0, 1) to effect the smooth nature of
the function in this interval.) In sharp contrast to this
the function inside the square brackets in (21) becomes
highly oscillatory in the interval (0, 1) for high-direc-
tivity apertures. For these apertures koL(=wD,)>1.
Then by the arguments presented in Appendix II we
can obtain a good estimate for My, which is an upper
bound on ’ A (t)[ , from the upper bound on

[EyOL2]27rko3 (1 — /2t

2 Wit \/(1 + t)
{ An+1(k0Lt) 2 J(2N) .
. l:(bAl(koLt) + — ) :l , 0<1t<£1(22)
w41

we will first determine an upper bound on ’g(‘”)(t)]

where g(¢) is given by

An—i—l(kOL_DA
+1

Expanding the right-hand side of (23), taking the (2N)th

derivative of both sides, and employing the elementary
principles of analysis, we get

g0 | < o] {IakLnlfen |

ey

Anr(BoLE)T] @)
+ Zb‘ [AI(kOLt)-v—il(—-o )]
n+ 1

) = <bA1(k0Lt) + >2; 011, (23)

)

0<1<1. (24)

Upper bounds for each of the three terms on the right-
hand side of (24) can be found by giving appropriate
values to the parameters p and ¢ in the inequality (43)
in Appendix I1I. When these upper bounds are sub-
stituted in (24), we get

| g(2N)(t) l < 24N+2,2 [@]m
~ aN® |2
o2+ (2¢/N)2r(n)? + 26(2e/ N)*(nl)],
0<1<1

(25)

where ¢ is the base of natural logrithm. For the other
t-dependent factor in (21) it is a simple matter to show
that

1 — 2/t

0.5
VA + 0 <0

In the arguments leading to (22) it was pointed out
that a good estimate for My, which is an upper bound
on | A (#)| in the interval 0<¢<1, could be obtained
from the upper bound on (22). Recalling the definition
of g(¢) as given by (23), and making use of (25) and (26),
we can write

(26)

0<tL 1.
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E,,ng 2 k03 D4N+2,2 koL 2N
Moy = > ———>
2 2wue N3 2

[62 + (2¢/N)*(n))? + 26Q2¢/N)"(n))]. (27)
Substituting (27) in (16), we get
EyLA\? kyle? [n)1]?
2 ) Zopo N3(AN + 1) [(AN)1]2

28N+3

| En(P))] < <

kOL 2N .
[_2_] (82 @e/N)mD)? + 22/ Ny m)l].  (28)

For Dy>>1 we certainly expect N>>1. This suggests that
(28) can be simplified by using Stirling’s approximation
for the factorials involving N. By Stirling’s approxima-
tion when % is larger

kloe A/ 2pkitiizg®, (29)

To illustrate the order of approximation involved, 10!
when computed by the above formula yields 3.598 X 10¢
while the actual value is 3.628 X 108,

Employing Stirling’s approximation in (28) we get

‘EN(PT)1< 8 1 [2.141))\]21%2

[PJow ~ /7 N32L N
-[82 + (2e/N)(n!)2 + 26(2¢/N)*(nl)] (30)
where we have used (we/4)~~2.14, and
E,?
Ploy = ——— wL?
[P:]Jou 27 mL (31)

In practice the value of b lies between 0 and 1, while
that of » lies between 1 and 5, (see [12]). For these
values of & and 7, [P,Jom represents the order-of-
magnitude of total real power radiated.

Since both 4 and # are of order unity, an examination
of the right-hand side of (30) reveals that for

Dy>1
and
N > 2.14D,

the | Ex(P,)|/[P:lom is completely and entirely neg-
ligible. And in fact for high-gain apertures N need only
be equal to [|2.14D>\H, the first integer greater than
2.14D,, for the error to be vanishingly small. This
justifies (10).

IV. SomeE CoMPUTATIONAL RESULTS

A principal assumption made in the derivation of
error estimate presented in Section II was that D> 1.
As a consequence of this assumption Mzy was obtained
from the upper bound on (22) and, also, Stirling’s ap-
proximation could be used for the factorials of N. And
indeed greater the D is the greater justification for
employing these simplications.

In the light of the above statement it becomes of con-
siderable interest to know how well the criterion
N={2.14D)|| fares for apertures for which Dy cannot

exactly be considered to be very much greater than
unity. In what follows we will consider two cases be-
longing to this class, i.e., Dy=15 and D, =7 wavelengths,
and show that the formula N==H2.14D)\|| for the error
involved in the discrete-point representation to be
negligible holds remarkably true even in' these cases.
The two values of D, were taken to show the rapid de-
crease in the error involved as D, is increased from 5
to 7. '
Substituting (21) and (31) in (7), we can write for the
total power radiated
P, x2D2 N

[P:]om 2

1 - th/Z)ﬁ
‘ VAR oY)

A, Dy 2
M) + error term.  (32)
n+1 ’

where we have normalized P, by dividing it by [P:]owu,
and where we have written error term for the second
term on the right-hand side for (7). As has been ex-
plained in Section II, it is a simple matter to generate
(o, t) tables from the tables provided by Stroud and
Secrest [10]. This was done on a digital computer for
each value of N from 10 to 20.

For the purpose of computation # was given a value of
unity. For each value of Dy, b was given three values 0,
0.25, and 0.5. The series on the right-hand side of (32)
was summed for each value of Dy and b, and the result
multiplied by the factor #2D\%/2 occurring in (32).
Numerical results correct to five decimal places have
been presented in Tables I and II.

To understand Tables I and II it is necessary to bear
in mind that as N is increased in (32), the error term de-
creases and would be practically zero after N has
reached a certain value. The value of the summation for
this value of IV is the true value of normalized power.
For example, we see from Table I that for D=5 there
is no change in the value of normalized P, as N is in-
creased from 15 onwards. Therefore, we can say that
for Dy =35 and b=0.5 the frue value of normalized power
is 1.07658, and the magnitude of error involved in using
a discrete 11-point (which corresponds to N =||2.14D,|
in this case) representation is 2X10~%, which is less
than 0.02 percent. For the same value of b when D, is
increased to 7 (see Table II), the N=||2.14D)]|(=15)
representation gives an error of 5X 1075 which isless
than 0.005 percent. Note the rapid decrease in error in-
volved with a small increase in D,.

Therefore, we can say that the criterion that
N =]2.14D,]| for the discrete-point representation to be
valid is not really limited by the assumption that Dy be
very much greater than unity.

277
F==1

. (b M(wD\i) +

V. APPLICATIONS OF THE THEORY

We have the conclusion that for high-directivity
circular apertures with linearly polarized and rota-
tionally symmetric excitation the total real radiated
power can be considered to be a weighted sum of radia-



KAK: RADIATED POWER OF PLANAR APERTURES

TABLE 1

Normalized total radiated power as obtained by
sumning the series on the R.H.S. of equation
(32) for Dk =5, n=1, and

N b = 0,5 b = 0.25 b=0
10 1.07538 0.64371 0.33319
11 1.07673 0.64428 0.33330
12 1.07656 0.64422 . 0.33328
13 1.07658 0.64421 0.33328
14 1.07658 0.64421 0.33328
15 1.07658 0.64421 0.33328
16 1.07658 0.64421 0.33328
17 1.07658 0,64421 0,33328
18 1.07658 0.64421 0.33328
19 1.07658 0.64421 0.33328
20 1.07658 0.64421 0.33328
TABLE 1I
Normalized total radiated power as obtained
by summing the series on the R.H.S. of
equation (32) for Dh =7, n=1and
N b=10.5 b = 0.25 b=20
10 1.04260 0.63433 0.33494
11 1.09811 0.65130 0.33354
12 1.07175 0.64218 0.33311
13 1.07988 0.64520 0.33338
14 1.07801 0.6&449 0.33330
15 1.07835 0.64463 0.33332
16 1.07830 0.64460 0.33331
17 1.07831 0.64461 0.33331
18 1.07830 0,6446) 0.33331
19 1,07830 0.64461 0.33331
20 1.07830 0.64461 0.33331

tion intensities in H2.14D;\H directions. For a given
N-point measurement scheme, the weights and the
directions involved are completely independent of the
parameters of the radiation system, and can be obtained
from the well-known properties of Legendre polynomials
that have been tabulated by various authors. And, also,
for determining the radiation intensities that enter the
weighted sum, only one component of the electric field
in the far-field region need be measured.

A knowledge of radiated power is required for the
computation of gain and radiation efficiency. The con-
ventional method that is usually employed to determine
the total radiated power consists of measuring radiation
intensities in all directions in space and the graphical
integration of the resulting power pattern [4]. The de-
termination of radiated power of high-directivity aper-
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TABLE III
SIN 8, FOR A 20-POINT, REPRESENTATION OF THE RADIATED POWER

k Sin o,
L 0.003
2 0.018
3 0.044
4 0.082
5 -0.129
6 0.186
7 0.250
8 0.320
9 0.394
10 0.471
11 0.548
12 0.624
13 0.698
14 0.766
15 0.828
16 0.883
17 0.928
18 0.962
19 0.986
20 0.998

tures by this method has generally been found to be
difficult. Two of the difficulties follow.

1) The error introduced into the graphical integra-
tion of the power patterns of such apertures.

2) The error introduced in measuring the fine side-
lobe structure.

Our representation of the radiated power eliminates
the first difficulty entirely, since the graphical integra-
tion is replaced by a sum of radiation intensites (as
determined from only one component of electric field in
the far-field region).

The discrete approach also reduces the second diffi-
culty.! That this is so will be explained with the help of
an example in which we will consider a discrete-point
representation of order 20. Although for high-directivity
aperture’s higher order discrete-point representations
are called for, it would mean presenting a huge amount of
data not necessarily leading to any additional insight.
For N =20, sinf,(=1#) were computed from the zeros of
the Legendre polynomial of degree 40 by the method
discussed in Section II. The values of sin 6 obtained
have been presented in Table IIl. From these values
of sin 6, we can see that for N =20, the first thirteen 0%
lie between 0° and 45°, while only the last seven are
between 45° and 90°. Now if it is recognized that the
angular interval 0° to 45° contains the main beam and
the first few sidelobes, and as # approaches 90° the side-
lobe structure becomes finer, then it is clear that fewer
measurements need be made in the region where side-
lobe structure is very fine. The property of 8 to cluster
around the normal to the aperture is a consequence of
the fact that the positive zeros of a Legendre poly-

1 Further work is required to determine the extent to which the
second difficulty is reduced. That is because even though the number
of measurements in the fine sidelobe structure would be very small
compared to the number of measurements in the main beam, the
overall accuracy would still be influenced by the accuracy of measure-
ments in the sidelobe structure, and further work is necessary to
determine the extent of this influence.
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nomial approach -1 (they remain distinct, of course)
as the degree of the polynomial approaches infinitity
[13]. The clustering of 8, around the normal to the
aperture becomes more pronounced as N is increased.

In addition to determining radiated power from a
discrete set of measurements some new measurement
techniques are suggested by our approach. For example,
if at a test site o1 in an antenna test chamber, N dipoles
were fixed at angles §;, that can easily be calculated from
our theory, then these fixed dipoles would measure the
total radiated power of all rotationally symmetric aper-
tures with diameters less than N/2.14 wavelengths.
That is because the angles at which the radiation inten-
sity need be measured depend only upon the total num-
ber of points in the measurement scheme and not on the
diameter of the aperture. And the number of points can
be any value greater than 2.14.D,.

AprPENDIX I

The discrete-point representation of integrals is the
result of Gauss—Jacobi theory of quadratures. An excel-
lent treatment of the foundations of this theory can be
found in the book by Davis [13]. In what follows we
will present a theorem without proof. For proof see
Krylov et al. [14] and Davis and Rabinowitz [15].

Theorem

Let f(x) belong to the class of functions that are at
least 2N-times differentiable in the interval (0, 1) then

1 1 N
. ‘“mf(x) dx = g oy, f (1)
94N+1 [(QN) !]3

eh 3
w1 [amy w89
where 0<n<1. Here x;=1—£% oy, where £ o is the
kth zero of the Legendre polynomial of the degree 21V,
the first zero being the one which is closest to +1. All
% lie between 0 and —+1. oy = 20 0n, Where og ox is the
weight corresponding to & sy in the (2N)th-order
Gauss—Legendre quadrature rule. "

o 2n and the corresponding &, 2x have been tabulated
by Stroud and Secrest [10] for each value of 2NV up to
512. From' these it is a simple matter to generate x;, ay
tables for any value of N up to 256.

AprpENDIX II

In this appendix we will illustrate that if a function
is a product of a relatively smooth (nonoscillatory) part
and a highly oscillatory part, then a good estimate for
the upper bound of the Kth derivative of the function
over a given interval is the product of the upper bound
on the nonoscillatory part and the upper bound on the
Kth derivative of the oscillatory part over the interval.

Consider for example,

2

x
x) = — 1
f(x) 1+ a>>

(34)

sin ax,

over the interval 0<x <1. Consider, for example, the
second derivative of this function over the interval
0<x<1. Taking the second derivative and using the
elementary principles of analysis, we can write

max If(z)(x)}
0<z<1

2 2x x?
< max Irl — -+ } sin ax
o<a<1 |l -+ xl 14+ (A 4+ x3
2% x?

+ max ZI: - :|acosax

0<z<1 1+= 1+ x)2

x2 '

+ max | — a®sin ax| . (35)

o<z<1|1l 4+ x

Since a>>1, it is easy to see that the first and the second
terms are of the order (1/¢%) and (1/a), respectively,
of the third term and can, therefore, be neglected in com-
parison with the third term. Therefore, when a>>1,itisa
good approximation to write

max If(z)(x)’ < max a? sin ax | . (36)

0<r<1 0<r<1

14 «?

The right-hand side of (36) has the following upper
bound

%2

1+ «2?

- max ’ (sin ax) (”]
0<z<1

(37)

maXx
0<z<1

which proves the statement made at the beginning of the
Appendix. Similar arguments would hold if the sine func-
tion in (34) is replaced by a Bessel function which is
highly oscillatory in the interval under consideration.

AppPENDIX III
The series expansion for the product J,(ax)J,(ax) is
given by [16]
Jp(ax) J (ax)
e (—1)(ax/2)rFerm(p 4 g 4 2m)!

=E0m1(p+q+m)1(p+m)x(g+m)z‘

(38)

Jp and J, are Bessel functions of order p and ¢, respec-
tively. Now

Am(ax)_ A(ax)

b4 q
= (p — DU g — DI2/ax)r™ T (ax)] (ax).

(39)
Substituting (38) in (39) and taking (2N)th derivative
of both sides, we get

Ay(ax) Ay (a N} *
| ; LA T -0 S
(DG g+ m o 20) 1@+ 20) 0/

(At N (p+gtmt V) 1(ptmt V) lg+m+ V) 1(2m)!

(40)
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The series in (40) was summed on a digital computer for
various values of p, ¢, ¢, and N. For each set of the
values of p, ¢, a, and N the result obtained indicates an
oscillatory function which has a maximum amplitude
at-x=0. The amplitude of oscillations decreases to
zero as ¥ becomes very large. For illustration Fig. 1
shows the graph obtained for

[ A, (ax) Aq(gx) ](ZN)

? ! (41)
[ Ap(ax)  Ag(ax) }(QN) "

p Q at o=0

for p=1, ¢=2, a=40, and N=20 and for 0<x<0.3.
Therefore, we can write

\[ Ap;a@ AQ(UM) ](ZN) < (p—Dig — 1)!

(b g+ 2NN (/2
Nip + ¢+ N)i(p + N)li(g + N)!

(42)
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the right-hand side being obtained by putting x=0 in
(40). For high-directivity apertures where Dy>>1 we
certainly expect N>>1. Therefore, we can use Stirling’s
approximation [see (29)] for those factorials in (42) the
argument of which contains N. We get

l [ A,,;a@ Aq(qax) TN)

T N3
c(2e/N)r+re2(p — 1) (g — 1)1,

In obtaining (43) we have assumed p and ¢ are small
compared with V. This is indeed the case in Section 111
where this inequality is to be used.

(43)
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