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versus channels and time information, followed by a

relatively short profile containing the occupancy in-

formation on the given frequency block during the five-

minute monitoring period.

Another mode of operation is a monitor mode. It

would provide for monitoring of a single channel at a

high-sample rate. This optional mode of operation can

be implemented relatively easily with minor program-

ming. This mode is very useful in determining precisely

what percentage of time a channel is occupied. This in-

formation can be of special significance for specific

channels, such as emergency channels and/or other

channels which show unusual occupancy conditions.

A more sophisticated application of the computer-

controlled spectrum surveillance system is that of

locating transmitters being used for bugging and eaves-

dropping. The frequency range and the mobility of the

system allow it to be moved easily into buildings where

suspected transmitters may be located. Cable coupling

devices can be used to check power and telephone lines for

transmission of information to some remote transmitter.

Only a few of the more apparent applications of the

system have been discussed. As harclware is being cle-

ployed in the field, more and more applications are being

generated, utilizing the mini-computer concept and data

output compatible with batch processing computers.

Changing from one application to another only requires

additional software, thus minimizing the obsolescence

of the system

ment dollars.

and maximizing the user’s capital invest-
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A Discrete Point Approach to the Measurement of

Radiated Power of Planar Apertures

AVINASH C. KAK, MEMBER, IEEE

Abstract—It is shown that for a high-gain circular aperture with
liiearly polarized and rotationally symmetric excitation the total real
radiated power can be expressed as a weighted sum of radiation in-
tensities in N direction, where N is equal to the iirst integer greater
than 2.14D~. DX is the dkuneter of the aperture in wavelengths. In an
N-point measurement scheme the N directions and the weights in-

volved in the weighted stun of radiation intensities are completely

independent of the parameters of the radiation system and can be

obtained from the well-known and tabulated properties of the
Legendre polynomials. The criterion that N be equal to the tirst
integer greater than 2. 14Dx is independent of any specific dMribu-
tion in the aperture so long as it is of the type parabolic-on-a-
pedestal. Such aperture distributions satisfy most needs and cover
typical behavior of actual dish antennas. Even though the result of
the theoretical formulation is that the above mentioned criterion for
N holds good only for high dkectivit y apertures, computational re-
sults show that for DX as small as 5 the error involved when N

satisfies thk criterion is less than 0.02 percent, and for Dk equal to
7 the error reduces to 0.005 percent. Thk not only indicates that the
criterion that N be equal to the first integer greater than 2. 14Da

holds good even for small values of Dh, but it also shows the rapid

decrease of error with increase in DA.

A knowledge of the total radiated power is required for the de-
termination of gain and radiation eillciency of an aperture. The
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discrete point approach to the measurement of total radiated power
eliminates the need for using the conventional method of graphical
integration of radiation patterns for the determination of the total
radiated power. The method of graphical integration has been known
to give erroneous results for high-gain apertures. Measurement of
radiation intensities in the fine sidelobe structure is another source

of error in the conventional method. In the discrete point approach
the directions in which the radiation intensity need be measured tend

to cluster around the normal to the aperture. This means fewer

measurements in the fine sidelobe structure.

I. INTRODUCTION

T

HE TOTAL POWER radiated by an aperture is

the integral of radiation intensity over all direc-

tions. In this paper we have shown that for circu-

lar apertures with rotationally symmetric excitation this

integral for the total real radiated power can be given a

discrete-point representation. We further show that this

discrete-point representation can be of any order, but

when the number of points is equal to or greater than

\12.14Dlll for a high-gain aperture, (.DL>>l) the error

involved in such a representation is completely and

entirely negligible. DA is the diameter of the aperture in

wavelengths and II2. 14D~l I denotes the first integer

greater than the number 2. 14Dh. Computational results



KAK: RADIATRD POWRR OF PLANAR APERTURSS 75

show that even when DA is not very large the criterion

that N be equal to II 2. 14Dlll holds good remarkably

well. For example, for .Dx as small as 5 the error involved,

when N is given by this criterion, is less than 0.02 per-

cent. When DA is increased to 7 the error involved with

N determined by the same criterion reduces to less than

0.005, percent. This also shows the rapid decrease of

error as DA increases.

A consequence of this discrete-point representation is

that for high-gain apertures the total real radiated power

can be considered to be a weighted sum of radiation in-
tensities in II2. 14DxII directions. This leads to the dis-

crete-point approach to the measurement of total power

radiated by an aperture. The directions in which the

radiation intensity need be measured and the weights

involved in the weighted sum of radiation intensities

depend only upon the number of points in the measure-

ment scheme, and are otherwise independent of the

parameters of the radiation system. These directions

and weights are completely determined by the proper-

ties of Legendre polynomials that are well known and

extensively tabulated in the literature.

The criterion that for an N-point measurement scheme

to be valid N must be equal to II2.14DAII holds good re-

gardless of any specific distribution in the aperture so

long as it is of the type (1 –p’)”-on-a-pedestal. These

aperture distributions, also called parabolic-on-a-pedes-

tal, satisfy most needs and cover typical behavior of

actual dish antennas [1]. Whether the above stated rule

would be true for Taylor circular apertures [2] also is

still an open question. The mathematical expression of

the pattern space factor of the Taylor-circular-aperture

distribution appears to be too complicated for the type

of analysis presented here. However, this does not re-

duce the range of applicability of our results as the Tay-

lor distributions in large circular apertures are not read-

ily realizable [1].

The theory that we have developed here holds good

when the aperture fields are linearly polarized. This

assumption is not overly restrictive, because for a wide

class of practical aperture antennas the aperture fields

can be considered to be almost completely linearly

polarized, the energy in the cross-polarization compo-

nent being almost completely negligible [3]. Our as-

sumption of rotational symmetry of the aperture dis-

tributions is also not overly restrictive. The most

common high-directivity apertures are of circular type,

such as parabolic dishes. These apertures usually have

rotationally symmetric aperture distributions. Although

simple feeds like dipoles, slots, and horns have unequal

E- and H-plane patterns, in practice considerable effort

is expended to equalize the feed patterns in two planes
[1].

The discrete-point approach to the measurement of

total radiated power is shown to have advantages over

the conventional methods. One conventional method

consists of the experimental measurement of the radia-

tion intensities in all directions and the graphical inte-

gration of the resulting power pattern [4], The integra-

ti on of power patterns is known to give results with error

for high-gain apertures. The discrete-point approach

eliminates this error entirely since there is no graphical

integration involved. Measurement of radiation intensi-

ties in the fine sidelobe structure is another source of

error in the conventional methods, In the discrete-point

approach the directions in which the radiation intensity

need be measured tend to cluster around the normal to

the aperture. This means fewer measurements in the

fine sidelobe structure.

II. A DISCRETE-POINT REPRESENTATION

FOR THE RADIATED POWER

For a planar aperture consisting of holes in a conduct-

ing screen in the yz plane the electromagnetic fields in

the region x> O, the region into which the aperture

radiates, can be expressed as a sum of an infinity of

plane waves. By using the plane-wave spectrum repre-

sentation the following expression for the total radiated

power can be derived for an aperture the aperture elec-

tric field of which is polarized along the y axis. (By aper-

ture electric field we mean the tangential component of

electric field in the aperture [.5]– [8 ]).

~ = (z~)’
r

20.)/.40Ss(ku2+ka2)<k02

(k? – L2) \ F’/(ku, k,) ~ ~k ~k (1)

(k,’ – k.’ – k.’)’/’ “ 2

where FV(kU, k,) represents complex amplitude of the y

component of the electric field in the continuous angular

spectrum of plane waves, and can be obtained from the

aperture electric field by the following relationship [5 ]–

[8]

1
Fv(kv, k.) = — Ss(2T)’yo>y,z)

. exp [j(kUy + ,k.z)]d:Y dz (2)

where EV(O, y, z) is the y component of the electric field

in the aperture and S denotes the aperture surface. In

(1) and (2) kg and k. are y and z components, respec-

tive y, of the free-space propagation vector of mag-

nitude ko = U(p06J1/2. o is the angular frecluency, PO the

permeability, and eothe dielectric constant of free space.

In a spherical coordinate system, the polar axis of

which coincides with the normal to the aperture, the

expression (1) for the total radiated power can be shown

to transform into

where t = sin 0. Note that the polar angle 6 is measured

from the normal to the aperture. p is the azimuthal

angle, and is measured in the plane of the aperture from

the z axis. In this spherical coordinate system the fol-

lowing relationship can also be derived
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j2irk0 COS6
EU(R, O,~) = ~ exp ( –jkOR)FV(O, ~) (4)

where R is the distance from the origin. This relation-

ship, which holds only in the far-field region, can be

derived by applying the method of stationary phase to

the plane-wave spectrum representation of EV(x, y, z)
[9].

For circular apertules with rotationally symmetric

excitation Fti, given by (2), reduces to the zeroth order

Hankel transform of the y component of electric field in

the aperture and is independent of the azimuthel angle

p. Therefore, expression (3) for total radiated power

reduces to

s1 1
P. = k(t) dt (5)

0{1—t

where

k(j) – (2r)’ko3 (1 – t’/2)t
2upo <(1 + t)

] F2/(t)12. (6)

For all aperture distributions that we shall be concerned

with, I Fu(t) I ‘, and therefore k(t),possess derivatives

of all orders on the interval (O, 1). This implies that if we

give a discrete N-point representation to the integral

in (5) by the theorem presented in Appendix I, then it is

possible to calculate the error involved in such a repre-

sentation for any value of N, since for every N the func-

tion h(t) possesses the (2N) th derivative in the interval

(O, 1). Therefore, by the theorem in Appendix I, we can

write (5) as

24X+1 [(2N)!]3
P, = s a’JZ(t,) + /z’(m) (n)

4N + 1 [(4N)!]2
(7)

h=l

where O<q <1. The second term on the right-hand side

in (7) denotes the error involved in the discrete-point

representation and will be called the error term. tkand

a~ are given by

tk= ~ — &k,~N (8)

ffk = 2ak,’N (9)

(k,2N is the kth positive zero of the Legendre polynomial
of degree 2N, the zeros being counted from the one

which is closest to +1. ~k,ZN is the weight corresponding

to $k,2N in the Gauss–Legendre quadrature rule of order
2iV. Both ~~,~N and the corresponding ~~,2N have been

tabulated by Stroud and Secrest [10] for values of (2N)

up to 516. It should be noted that all tk lie between O

and 1.

It was indicated in the Introduction that we are con-

cerned here with high-directivity circular apertures with

aperture excitation of the type parabolic-on-a-pedestal.

Let Di denote the diameter of such an aperture in wave-
lengths. In the next section an upper bound for the error

term in (7) is derived and it is shown that for such aper-
tures if DA>> 1, and if N> 2. 14DA then the error term in

(7) becomes entirely negligible and can be taken to be

zero for all purposes. And, in fact, N need only be equal

to 1)2.14D~ll, where II2.14D~ll denotes the first integer

greater than the number 2. 14D~. Computational results

presented in Section lV show that even when DA is as

small as 7 the error term, when N= II2.14DxII, is of the

order of 10–5P, which is indeed negligible for all engi-

neering purposes. The error term is also shown to de-

crease very rapidly as DA increases. It should be noted

that the criterion that N= II2. 14Dill is independent of

the aperture distribution so long as it is of the type para-

bolic-on-a-pedestal. Therefore, we can write

P. = “’”~’” q /i(t,) (lo)
k=O

where we have retained the equality sign to emphasize

that the error involved is an entirely negligible fraction

of P, for high-gain apertures.

Substituting (4) in (6), and substituting the resulting

equation in (10), we get, after making use of the fact

that t = sin 0,

rP, = 2ir& & ~ I EU(R, &)121 (11)
k=o LUO

where

N = 112.14Dhll

(2 – sin’ ok)
h = ~k,2N

V(1 + sin 6’k)

ok = sin-l (tk) = sin–l (1

20 = <(No/eO).

-1

sin ok
(12)

cOS2ek

– t2k,2N) (13)

As has been mentioned before .$k,’N and ~k~ZNhave been

tabulated by Stroud and Secrest [1o] for each value of

2Nup to512. By using (12) and (13) it is indeed a simple

matter to convert these tables into Ok, ~k tables for each

value of N up to 256.

In (11) R2/2Zo. I EU(R, ok) I 2 represents the radiation

intensity as determined from y-directed component of

electric field alone in the direction ok in the far-field re-

gion. The angle ok is measured from the normal to the

aperture, and the azimuthal angle does not matter be-

cause of rotational symmetry.
Equation (11 ) represents the total radiated power as a

sum of radiation intensities, as determined from only

one component of the electric field, in 1]2. 14Dx\ \ direc-

tions. That only one component of electric field is in-

volved in the discrete sum is not at all surprising. That

is because it is quite possible to express the conven-

tional integral for the total radiated power in terms of

only the y component of electric field in the far-field

region [11].

III. ERROR ESTIMATE FOR THE DISCRETE-

POINT REPRESENTATION

In this section our aim is to justify (10). In other

words, we have to show that the error term in (7) is in-

deed a vanishingly negligible fraction of total radiated

power when N= II2.14Dll\.
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Let the error term in (7) be denoted by EN(P,), then

Z4N+1 [(2N)!]3
EN(P,) = —— h(W)(q) (14)

4N + 1 [(4N) !]2

where O<q <1. This means that there exists a point in

the interval (O, 1) at which the (2N) th derivative of

h(t) yields through (14) the required error. Now suppose

we are able to find a quantity ~ZN that iS an upper

bound on the magnitude of the (2N)th

h(t) on the interval (O, 1), then

I h@N’(q) \ < ~2N

and we can write for the upper bound on

deri

the

\ &(f’,) I < 24N+’‘(2N)!]3~,N.
4N + 1 [(4N) !]2

ative of

(15)

EN(P,) I

(16)

In the subsequent analysis we will determine the quan-

tity ~zN and, thence, the upper bound on the error

I EN(P,) 1.
As was mentioned in the Introduction, our concern

here is with the aperture excitation of the type parabolic-

on-a-pedestal. Expressed mathematically for a circular

aperture of radius L, the aperture electric field can be

written as

EV(O, y, Z) = Ev, {b + [1 – (WL)21n}> P<L

= o, p > L (17)

where b controls the height of the pedestal and n is any
integer greater than zero. In the above equation p is

given by

p = /(y2 + z~). (18)

The y component of the pattern-space factor of such an

aperture distribution is obtained by substituting (17)

in (2). We get

where

~ !Jn(z)

An(x) =
(x/2)”

J,, (x) being the nth-order Bessel function.

Substituting (19) in (6), we can write for h(t)

EUOL2 2Tk03 (1 – t2/2)t

[1h(t) = ~ —
cop, <(1 + t)

[

A.+l(koLt) 2
. bA,(k,Lt) + 1?2+1 “

The t-dependent term outside the square brackets,

(1 – t’/2)t

(19)

(20)

(21)

i.e.,

/(1 + t)

is a relatively smooth (nonoscillatory) function in the

interval (O, 1). A plot of this function would show that

its value increases without changing sign from zero at

the origin to 0.35 to t=1, attaining a maximum of 0.40

at approximately t = 0.8. (Apparently the singularity of

this function, which occurs at t= – 1, is too far away

from the interval (O, 1) to effect the smooth nature of

the function in this interval. ) In sharp contrast to this

the function inside the square brackets in (21) becomes

highly oscillatory in the interval (O, 1) fc}r high-direc-

tivity apertures. For these apertures kOL( =r.DJ>>l.

Then by the arguments presented in Appendix II we

can obtain a good estimate fcx ~2N, which is an upper

bound on I k(2Nj (t)1,from the upper bound on

EVOL2 ‘ rk03 (1 – t2/2)t

[1.————.
2 Wp, /(1 + t)

“1[(
A~+l(kOLt) 2 “~,

bA1(k,Lt) + —— )1 1>o< f<l (22)
?’L+l

we will first determine an upper bound on I g(2N)(t)I

where g(t) is given by

( A.+l(koLt) 2

)
g(t) = bA1(koLt) + —— , 0 :; t <1, (23)

n+l

Expanding the right-hand side of (23), taking the (2N)th

derivative of both sides, and employing the elementary

principles of analysis, we get

I g(2N)(t) I < b’ I [ [A,(koLt)]2} (’N] ~

‘1{[A’:?”?I’}(2N)I
1[

A,,+l(kOLt) (’~1II+2b Al(koLt) .–;-- ,

O<t <l. (24)

Upper bounds for each of the three terms on the right-

hand side of (24) can be found by giving appropriate

values to the parameters P and g in the inequality (43)

in Appendix III. When these upper bounds are sub-

stituted in (24), we get

~[b2 + (2e/N)2n(n!)2 + 2b(2e/,Y)’’(n0],

where e is the base of natural logrithm. 170r the other

t-dependent factor in (21) it is a simple matter to show

that
(1 – t’/2)t

— <0.5, O< f<l.
<(1 + t)

(26)

In the arguments leading to (22) it was pointed out

that a good estimate for ibfZN, which is an upper bound

on I lz(2Nl(t)I in the interval O<t <1, could be obtained

from the upper bound on (22). Recalling the definition

of g(t) as given by (23), and making use of (2!5) and (26),

we can write
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EUOL2 2 ko3 z4N+2e2 ko~ 2N

()

~2N= y ‘—

H2qlo w 2

. [b’+ (2e/N)2n(n!)2 + 2b(2e/N)fi(n!)]. (27)

Substituting (27) in (16), we get

I ~N(~T) I S (=)’= ~3(::. 1) 8%

[1.~ ‘N.[b’+(2e/N)2”(73!)2 + 2b(2e/lV)”(73) !]. (28)

For DX>>l we certainly expect N>>l. This suggests that

(28) can be simplified by using Stirling’s approximation

for the factorials involving N. By Stirling’s approxima-

tion when k is larger

k ! ~ ~~=&ll&q (29)

To illustrate the order of approximation involved, 10!

when computed by the above formula yields 3.598X 106

while the actual value is 3.628X 10G.

Employing Stirling’s approximation in (28) we get

I EN(P,) I ~ 8 1 2.14DL ‘N+’

[P,]OM [1‘~~ AT
.[b2+(2e/N)2’I(IZ!)’ + 2b(2e/N)”(n!)] (30)

where we have used (~e/4) E2. 14, and

[P,]OM = :$ TL2. (31)

In practice the value of b lies between O and 1, while

that of n lies between 1 and 5, (see [12]). For these

values of b and n, [P, ]0 M represents the order-of-

magnitude of total real power radiated.

Since both b and n are of order unity; an examination

of the right-hand side of (30) reveals that for

D~>>l

and

N > 2.14Dh

the I EN(~r) I / [~, ]0 M is completely and entirely neg-

ligible. And in fact for high-gain apertures N need only

be equal to II2.14D~ll, the first integer greater than

2. 14Dl, for the error to be vanishingly small. This

justifies (10).

IV. SOME COMPUTATIONAL RESULTS

A principal assumption made in the derivation of

error estimate presented in Section II was that Dk>>l.

As a consequence of this assumption ~’N was obtained

from the upper bound on (22) and, also, Stirling’s ap-

proximation could be used for the factorials of N. And

indeed greater the DA is the greater justification for

employing these simplications.

In the light of the above statement it becomes of con-

siderable interest to know how well the criterion

N= II2. 14D~l\ fares for apertures for which DA cannot

exactly be considered to be very much greater than

unity. In what follows we will consider two cases be-

longing to this class, i.e., DA= 5 and D~ = 7 wavelengths,

and show that the formula N = II2. 14.DAII for the error

involved in the discrete-point representation to be

negligible holds remarkably true even in these cases.

The two values of DA were taken to show the rapid de-

crease in the error involved as DA is increased from 5

to 7.

Substituting (21) and (31) in (7), we can write for the

total power radiated

/“” ?’ 3+1 /,

where we have normalized PV by dividing it by [P, ]o M,

and where we have written error term for the second

term on the right-hand side for (7). As has been ex-

plained in Section II, it is a simple matter to generate

(w, t,)tables from the tables provided by Stroud and

%crest [10]. This was done on a digital computer for

each value of N from 10 to 20.

For the purpose of computation n was given a value of

unity. For each value of Dx, b was given three values O,

0.25, and 0.5. The series on the right-hand side of (32)

was summed for each value of DX and b, and the result

multiplied by the factor 7r2D~2/2 occurring in (32).

Numerical results correct to five decimal places have

been presented in Tables I and II.
To understand Tables I and II it is necessary to bear

in mind that as N is increased in (32), the error term de-

creases and would be practically zero after N has

reached a certain value. The value of the summation for

this value of N is the true value of normalized power.

For example, we see from Table I that for Dl = 5 there

is no change in the value of normalized P, as N is in-

creased from 15 onwards. Therefore, we can say that

for Dh = 5 and b = 0.5 the true value of normalized power

is 1.0’7658, and the magnitude of error involved in using

a discrete 1l-point (which corresponds to N= II2. 14Dlll

in this case) representation is 2 X 10–4, which is less

than 0,02 percent. For the same value of b when DA is
increased to 7 (see Table II), the N=/12.14Dlll (=15)

representation gives an error of 5 X 10–5, which is less

than 0.005 percent. Note the rapid decrease in error in-

volved with a small increase in Dx.
Therefore, we can say that the criterion that

N = II2. 14D~ll for the discrete-point representation to be

valid is not really limited by the assumption that DX be

very much greater than unity.

V. APPLICATIONS OF THE THEORY

lVe have the conclusion that for high-directivity

circular apertures with linearly polarized and rota-

tionally symmetric excitation the total real radiated

power can be considered to be a weighted sum of radia-
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TABLE I

Normalized total radiated power as obtained by
swing the series on the R.H. S. of equation
(32) for Di = 5, n = 1, and

N b = 0.5 b = 0.25 b=O

10 1.07538 0.64371 0.33319

11 1.07673 0.64428 0.33330

12 1.07656 0.64422 0.33328

13 1.07658 0.64421 0.3332S

14 1.07658 0.64421 0.33328

15 1.07658 0.64421 0.3332S

16 1.07658 0.64421 0.3332S

17 1.07658 0.64421 0.3332S

18 1.07658 0.64421 0.33328

19 1.0765S 0.64421 0.3332S

20 1.07658 0.64421 0.33328

TABLE II

Normalized total radiated power as obtained

by summing the series on the R.H. S. of
equation (32) for D = 7, n = 1 and

A

N b = 0.5 b = 0.25 b-O

10

11

12

13

M

15

16

17

18

19

20

1.04260

1.09811

1.07175

1.07988

1.07801

1.07835

1.07830

1.07831

1.07830

1.07830

1.07830

0.63433

0.65130

0.64218

0.64520

0.64449

0.64463

0.64460

0.64461

0,64461

0.64461

0.64461

0.33494

0.33354

0.33311

0.33338

0.33330

0.33332

0.33331

0.33331

0.33331

0.33331

0.33331

tion intensities in ]) 2. 14DAII directions. For a given

IV-point measurement scheme, the weights and. the

directions involved are completely independent of the

parameters of the radiation system, and can be obtained

from the well-known properties of Legendre polynomials

that have been tabulated by various authors. And, also,

for determining the radiation intensities that enter the

weighted sum, only one component of the electric field

in the far-field region need be measured.

A knowledge of radiated power is required for the

computation of gain and radiation efficiency. The con-

ventional method that is usually employed to determine

the total radiated power consists of measuring radiation

intensities in all directions in space and the graphical

integration of the resulting power pattern [4]. The de-

termination of radiated power of high-directivity aper-

TAB’LE III

SIN Ok FOR A 20-POINT~REPRESENTATION OF THE RADIATED POWER
~=

k Sin
%

1 0.003
2 0.018

0.044
: 0.082
5 0.129
6 0.186
7 0,250
8 0.320
9 0.394

10 0.471
11 0.548
12 0.624
13 0.698
14 0.766
15 0.828
16 0.883
17 0.928
18 0.962
19 0.986
20 0.998

tures by this method has generally been found to be

difficult. Two of the difficulties follow.

1) The error introduced into the graphical integra-

tion of the power patterns of such apertures.

2) The error introduced in measuring the fine side-

.lobe structure.

Our representation of the radiated power eliminates

the first difficulty entirely, since the graphical integra-

tion is replaced by a sum of radiation intensities (as

determined from only one component of electric field in

the far-field region).

The discrete approach also reduces the second diffi-

culty. 1 That this is so will be explained with the help of

an example in which we will consider a discrete-point

representation of order 20. Although for high-directivity

aperture’s higher order discrete-point representations

are called for, it would mean presenting a huge amount of

data not necessarily leading to any additional insight.

For N= 20, sin %( -h+) were computed from the zeros of

the Legendre polynomial of degree 40 by the method

discussed in Section II. The values of sin Ok obtained

have been presented in Table III. From these values

of sin dk we can see that for N =20, the first thirteen Ok

lie between 0° and 45°, while only the last seven are

between 45° and 90°. Now if it is recognized that the

angular interval O“ to 45” contains the main beam and

the first few sidelobes, and as O approaches 90° the side-

lobe structure becomes finer, then it is clear that fewer

measurements need be made in the region where side-

lobe structure is very fine. The property of Ok to cluster

around the normal to the aperture is al consequence of

the fact that the positive zeros of a Legendre poly-

1 Further work is required to determine the extent to which the
second difficulty is reduced. That is because even though the number
of measurements in the fine sidelobe structure would be very small
compared to the number of measurements in the main beam, the
overall accuracy would still be influenced by the accuracy of measure-
ments in the 8idelobe structure, and further work is necessary to
determine the extent of this influence.
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nomial approach + 1 (they remain distinct, of course)

as the degree of the polynomial approaches infinitity

[13]. The clustering of e, around the normal to the

aperture becomes more pronounced as N is increased.

In addition to determining radiated power from a

discrete set of measurements some new measurement

techniques are suggested by our approach. For example,

if at a test site o~ in an antenna test chamber, N dipoles

were fixed at angles tik that can easily be calculated from

our theory, then these fixed dipoles would measure the

total radiated power of all rotationally symmetric aper-

tures with diameters less than N/2. 14 wavelengths.

That is because the angles at which the radiation inten-

sity need be measured depend only upon the total num-

ber of points in the measurement scheme and not on the

diameter of the aperture. And the number of points can

be any value greater than 2. 14D1.

APPENDIX I

The discrete-point representation of integrals is the

result of Gauss–Jacobi theory of quadrature. An excel-

lent treatment of the foundations of this theory can be

found in the book by Davis [13]. In what follows we

will present a theorem without proof. For proof see

Krylov et al. [14] and Davis and Rabinowitz [15].

Theorem

Let $(x) belong to the class of functions that are at

least 2N-times differentiable in the interval (O, 1) then

24AT+1 [(2N) !]’
+ ——

4A4T+ 1 [(4N) !]2
j-@’’(q) (33)

where O <~ <1. Here xk = 1 ‘~2~,~AT, where &,~A? is the

kth zero of the Legendre polynomial of the degree 2N,

the first zero being the one which is closest to +1. All

xk lie between O and +1. @ = 2ffk,zw, where @,ZA? is the

weight corresponding, to &,ZiV in the (2 N)th-order

Gauss–Legendre quadrature rule.

ak ,zA7and the corresponding {~,zAT have been tabulated

by Stroud and Secrest 110] for each value of 2N up to

512. From these it is a simple matter to generate xk, ffk

tables for any value of N up to 256.

APPENDIX II

In this appendix we will illustrate that if a function

is a product of a relatively smooth (nonoscillatory) part

and a highly oscillatory part, then a good estimate for

the upper bound of the Kth derivative of the function

over a given interval is the product of the upper bound

on the nonoscillatory part and the upper bound on the

Kth derivative of the oscillatory part over the interval.

Consider for example,

(34)

over the interval O <x <1. Consider, for example, the

second derivative of this function over the interval

0 <x <1. Taking the second derivative and using the

elementary principles of analysis, we can write

,:::1 ] j’~’($) ]

2

r

2x x’ .
< max — 1–— —

‘O<J<l 1 + XL 11+22+ F+ X)’ ‘lna’

1[

2x X2
+max2— ——

1+;– (1+X)’ 1
a cos ax

O<z<l

X2
+ max –— a2 sin a% . (35)

O<z<l 1 +x

Since a>>l, it is easy to see that the first and the second

terms are of the order (1/a2) and (l/a), respectively,

of the third term and can, therefore, be neglected in com-

parison with the third term. Therefore, when a>>l, it is a

good approximation to write
\

x’
max I j@) (x) ] ~ max — a2 sin ax . (36)

O<z<l 0<.t<l 1 + X2

The right-hand side of (36) has the following upper

bound

X2
max ——— . max ] (sin ax) (2) I (37)

O<z<l 1 + X2 O<z<l

which proves the statement made at the beginning of the

Appendix. Similar arguments would hold if the sine func-

tion in (34) is replaced by a Bessel function which is

highly oscillatory in the interval under consideration.

APPENDIX 111

The series expansion for the product ~P(ax) J, (ax) is

given by [16]

Jp(ax) J,(ax)

m (– l)~(az/2)”+q+’~(p + q + 2m.) !
=x . (38)

m=o m!(p+ q+??’) !(p+m)!(q+? n)!

J, and Jq are Bessel functions of order p and q, respec-

tively. Now

Afl(az) Aq(az)

P “–q

= (t – 1) !(g – 1) !(2/ax)”+r~fl(ax)~q(ax). (39)

Substituting (38) in (39) and taking (2N) th derivative

of both sides, we get

[

Az(ax) AQ(aY) (2N)

P 1

=(p–l)!(q–l)!5

q m-o

(– l)~+N(p + q + 2m ~ 2.?J) !(2w + 2.4’) !(a,/2)z~+zA’a?~

(m+?’) !(p+q+m+N) !(~+m+A’) !(q+m+.Y) !(2nz) ! “

(40)
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Fig. 1. Graph of the normalized value of [AP(aX)/P A~(ax) /g]c2NJ
for p= 1, q=2, a=40, and IV=20.

The series in (40) was summed on a digital computer for

various values of P, q, a, and N. For each set of the

values of $, q, a, and N the result obtained indicates an

oscillatory function which has a maximum amplitude

at x = O. The amplitude of oscillations decreases to

zero as x becomes very large. For illustration Fig. 1

shows the graph obtained for

[

AP(ax) A,(q*) (’~)

P q 1

(41)

[

AP(ax) A,(at) “’)’)

P (1 1 at .=0

for p=l, g=2, a=40, and N=20 and for O< X<O.3.

Therefore, we can write

1[

AP(a.r) A,(ax) (’~)

II

<(p–l)!(q– l)!

P–Y

(~ + q + 2AJ7)!(2N) !(a/2)2N
.— —– (42)

N!(p+q+ lv)!(p+fv)!(q+lv)!

81

the right-hand side being obtained by putting x = O in

(40). For high-directivity apertures where DX>> 1 we

certainly expect N>>l. Therefore, we can use Stirling’s

approximation [see (29) ] for those factorials in (42) the

argument of which contains N. we get

1[

Afl(ax) Ag(az) [’~)

II

1 24N+2e2(a/2) ‘N
< — ———–——-.

P-q n- A73

. (2,/,7’) fl+qp – 1) !(y – 1)!. (43)

In obtaining (43) we have assumed ~ and q are small

compared with N. This is indeed the case in Section III

where this inequality is to be used.
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